Desingularization of complex multiple zeta-functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple finite Riemann zeta functions

Observing a multiple version of the divisor function we introduce a new zeta function which we call a multiple finite Riemann zeta function. We utilize some q-series identity for proving the zeta function has an Euler product and then, describe the location of zeros. We study further multi-variable and multi-parameter versions of the multiple finite Riemann zeta functions and their infinite cou...

متن کامل

Analytic Continuation of Multiple Zeta Functions

In this paper we shall define the analytic continuation of the multiple (Euler-Riemann-Zagier) zeta functions of depth d: ζ(s1, . . . , sd) := ∑ 0 1 and ∑d j=1 Re (sj) > d. We shall also study their behavior near the poles and pose some open problems concerning their zeros and functional equations at the end.

متن کامل

Analytic continuation of multiple Hurwitz zeta functions

We use a variant of a method of Goncharov, Kontsevich, and Zhao [Go2, Z] to meromorphically continue the multiple Hurwitz zeta function ζd(s; θ) = ∑ 0<n1<···<nd (n1 + θ1) −s1 · · · (nd + θd)d , θk ∈ [0, 1), to C, to locate the hyperplanes containing its possible poles, and to compute the residues at the poles. We explain how to use the residues to locate trivial zeros of ζd(s; θ).

متن کامل

On Functions of Arakawa and Kaneko and Multiple Zeta Functions

We study for s ∈ N the functions ξk(s) = 1 Γ(s) R ∞ 0 t et−1 Lik(1−e )dt, and more generally ξk1,...,kr (s) = 1 Γ(s) R ∞ 0 t et−1 Lik1,...,kr (1 − e )dt, introduced by Arakawa and Kaneko [2] and relate them with (finite) multiple zeta functions, partially answering a question of [2]. In particular, we give an alternative proof of a result of Ohno [8].

متن کامل

Multiple q-zeta functions and multiple q-polylogarithms

For every positive integer d we define the q-analog of multiple zeta function of depth d and study its properties, generalizing the work of Kaneko et al. who dealt with the case d = 1. We first analytically continue it to a meromorphic function on C with explicit poles. In our Main Theorem we show that its limit when q ↑ 1 is the ordinary multiple zeta function. Then we consider some special va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Mathematics

سال: 2017

ISSN: 1080-6377

DOI: 10.1353/ajm.2017.0002